Почему молекула днк не могла быть построена из нуклеотидов трех типов

Моргана было показано, что элементарные наследуемые признаки обусловлены материальными единицами генамилокализованными в хромосомах, где они располагаются последовательно друг за другом. Через 10 лет Дж. Крик предложили нее физической структуры молекулы ДНК. Длинная молекула быыть двойной ППочему, а комплиментарное взаимодействие между двумя нитями этой спирали позволяет понять, каким образом генетическая информация точно копируется реплицируется и передается последующим поколениям. Итак, ген хранит информацию для синтеза белка ферментанеобходимого для успешного осуществления в клетке моюекула реакции.

Но пришлось подождать до х годов, прежде чем был разгадан сложный механизм расшифровки информации, заключенной в ДНК, и ее перевода в форму белка. В году швейцарский биохимик Фридрих Мишер обнаружил в ядре клеток соединения с кислотными свойствами и с еще большей молекулярной массой, чем белки. Так же, как и белки, нуклеиновые кислоты являются полимерами. Ртех их служат нуклеотиды, в связи с чем нуклеиновые кислоты можно еще назвать полинуклеотидами. Нуклеиновые кислоты были найдены в клетках всех организмов, начиная от простейших и кончая высшими. Самое удивительное, что химический состав, структура и основные свойства этих веществ оказались сходными у разнообразных живых организмов.

Но если в построении белков принимают участие около 20 видов аминокислот, то разных нуклеотидов, входящих в состав нуклеиновых кислот, всего четыре. Нуклеиновые кислоты различают на две разновидности — дезоксирибонуклеиновую кислоту ДНК и рибонуклеиновую кислоту РНК. Мономерами ДНК и РНК являются нуклеотиды, которые состоят из азотистых, пуриновых аденин и гуанин и пиримидиновых урацил, тимин и цитозин оснований, остатка фосфорной кислоты и углеводов рибозы и дезоксирибозы. Молекулы ДНК содержатся в хромосомах ядра клетки живых организмов, в эквивалентных структурах митохондрий, хлоропластов, в прокариотных клетках и во многих вирусах. По своей структуре молекула ДНК похожа на двойную спираль.

Структурная модель ДНК в виде двойной спирали впервые предложена в г. Уотсоном и английским биофизиком и генетиком Ф. Криком, удостоенными вместе с английским биофизиком М. Уилкинсоном, получившим рентгенограмму ДНК, Нобелевской премии г. Нуклеиновые кислоты - это биополимеры, макромолекулы которых состоят из многократно повторяющихся звеньев - нуклеотидов. Поэтому их называют также полинуклеотидами. Важнейшей характеристикой нуклеиновых кислот является их нуклеотидный состав. В состав нуклеотида - структурного звена нуклеиновых кислот - входят три составные части: В нуклеиновых кислотах содержатся основания 4-х разных видов: Азот, содержащийся в кольцах, придает молекулам основные свойства.

Сахар, входящий в состав нуклеотида, содержит пять углеродных атомов, то есть представляет собой пентозу. В зависимости от вида пентозы, присутствующей в нуклеотиде, различают два вида нуклеиновых кислот — рибонуклеиновые кислоты РНКкоторые содержат рибозу, и дезоксирибонуклеиновые кислоты ДНКсодержащие дизоксирибозу. Нуклеиновые кислоты являются кислотами потому, что в их молекулах содержится фосфорная кислота. Нуклеотид - фосфорный эфир нуклеозида. В состав нуклеозида входят два компонента: Метод определения состава ПК основан на анализе гидролизатов, образующихся при их ферментативном или химическом расщеплении. Обычно используются три способа химического расщепления НК. Нуклеотиды соединяются в цепь посредством ковалентных связей.

Образованные таким образом цепи нуклеотидов объединяется в одну молекулу ДНК по всей длине водородными связями: При этом аденин всегда распознает только тимин и связывается с ним и наоборот.

Почему человек, как и большинство других машин выживания, практикует последнее размножение. Почему человек, как и большинство других машин выживания, практикует половое размножение.

Подобную пару образуют гуанин и цитозин. Такие пары оснований, как и нуклеотиды, называются комплементарными, а сам принцип ттипов двухцепочной молекулы ДНК — принципом комплементарности. Число нуклеотидных пар, например, в организме человека составляет 3 — 3,5 млрд. ДНК — материальный носитель наследственной нее, которая кодируется последовательностью нуклеотидов. Постронна четырех типов типпов в цепях Иогла определяет последовательность нуклеотидоов в молекулах белка, то есть их первичную структуру. От набора белков зависят свойства клеток и индивидуальные признаки организмов. Определенное сочетание нуклеотидов, несущих информацию о структуре белка, и последовательность их расположения в молекуле ДНК образуют генетический код.

Он занимает участок молекулы ДНК, определяющий структуру одной молекулы белка. Совокупность генов, содержащихся в одинарном наборе хромосом данного моюекула, называется геномом, а генетическая ббыть организма совокупность всех его генов — генотипом. Нарушение последовательности нуклеотидов в цепи ДНК, а следовательно, в генотипе приводит к наследственным изменениям в организме—мутациям. Для молекул ДНК характерно важное свойство удвоения — образования двух одинаковых двойных спиралей, каждая из которых идентична исходной молекуле.

Такой процесс удвоения молекулы ДНК называется репликацией. Репликация включает в себя разрыв старых и формирование новых водородных связей, объединяющих цепи нуклеотидов. В начале репликации две старые цепи начинают раскручиваться и отделяться друг от друга. Затем по принципу комплементарности к двум старым цепям пристраиваются новые. Так образуются две идентичные двойные спирали. Репликация обеспечивает точное копирование генетической информации, заключенной в молекулах ДНК, и передает ее по наследству от поколения к поколению.

Состав ДНК ДНК дезоксирибонуклеиновая кислота - биологический полимер, состоящий из двух полинуклеотидных цепей, соединенных друг с другом. В этой главе я определил ген таким образом, что при всем желании не могу оказаться неправым! Естественный отбор в своей самой общей форме означает дифференциальное выживание организмов. Одни организмы сохраняются, а другие вымирают, но для того, чтобы эта селективная гибель оказывала какое-то воздействие на мир, необходимо еще одно условие: Этими свойствами наделены мелкие генетические единицы, а индивидуумы, группы и виды таких свойств лишены.

Большая заслуга Грегора Менделя состоит в том, что он продемонстрировал возможность рассматривать наследственные единицы как неделимые и независимые частицы. Сегодня мы знаем, что это некоторое упрощение. Даже цистрон иногда поддается делению, а любые два гена, находящиеся в одной хромосоме, не вполне независимы. Что касается меня, то я определил ген как единицу, которая в значительной степени приближается к идеалу неделимой корпускулярности. Ген нельзя считать неделимым, но делится он редко.

молла Он либо несомненно присутствует, либо несомненно отсутствует в теле каждого данного индивидуума. Ген передается от деда или бабки к внуку или внучке, оставаясь интактным, и проходит через промежуточное поколение, не смешиваясь с другими генами. Если бы гены постоянно сливались друг с другом, естественный отбор в нашем теперешнем понимании был бы невозможен. Между прочим, это было доказано еще при жизни Дарвина и причинило ему немало беспокойства, поскольку моьекула те дни господствовала теория слитной наследственности.

Открытие Менделя уже было опубликовано и оно могло бы успокоить Дарвина, но, увы! Она привлекла внимание лишь ппостроена годы после смерти и Дарвина, и Менделя. Мендель, возможно, не представлял себе всего значения своих открытий, иначе он мог бы написать Дарвину. Другой аспект корпускулярности гена состоит в том, что он никогда не стареет; он с равной вероятностью может умереть в возрасте как миллиона, так и всего ста лет. Он перепрыгивает из одного тела в другое, манипулируя ими на свой лад и в собственных целях, покидая эти смертные тела одно за другим, прежде чем они состарятся и умрут.

Гены бессмертны, или, скорее, их определяют как генетические сущности, почти заслуживающие такого эпитета. Мы, индивидуальные машины выживания в этом мире, можем рассчитывать прожить еще несколько десятков лет. Но ожидаемая продолжительность жизни генов должна измеряться не в десятках, а в тысячах и миллионах лет. У видов, размножающихся половым путем, отдельная особь — слишком крупная и слишком преходящая генетическая единица, чтобы ее можно было назвать значимой единицей естественного отбора. Группа индивидуумов — еще более крупная единица. С генетической точки зрения индивидуумы и группы подобны тучам на небе или пыльным бурям в пустыне.

Это временные агрегации или федерации. Они не остаются стабильными в эволюционном масштабе времени.

Объясните почему молекула днк не могла быть построена из нуклеотидов трех типов ?

Популяции могут сохраняться довольно долго, но они постоянно смешиваются с другими популяциями, утрачивая при этом свою идентичность. Кроме того, они подвержены эволюционному изменению изнутри. Отдельный организм кажется достаточно дискретным, пока он живет, но, Боже, как недолго это длится! Эволюция невозможна, если все, чем вы располагаете — выбор между организмами, каждый из которых имеется лишь в одном экземпляре! Половое размножение — это не репликация. В ваших детях от вас лишь половина, в ваших внуках — лишь четверть. По прошествии нескольких поколений вы можете надеяться только на то, что каждый из ваших многочисленных потомков будет нести в себе маленькую частичку, полученную от вас, всего несколько генов, даже в том случае, если некоторые среди этих потомков будут носить вашу фамилию.

Индивидуумы не вечны, они преходящи. Хромосомы также уходят в небытие, подобно пачке карт, полученных каждым из игроков и отыгранных вскоре после сдачи. Но с самими картами при тасовке ничего не происходит.

Карты — это гены. Гены не разрушаются при кроссинговере, они просто меняют партнеров и продолжают двигаться. Конечно, они движутся. Они — репликаторы, а мы — машины, необходимые им для того, чтобы выжить. После того как мы выполнили свою задачу, нас выбрасывают. Но гены — выходцы из геологического времени, они здесь навеки. Гены, подобно алмазам, вечны, но в несколько ином плане, чем алмазы. Отдельный кристалл алмаза постоянно сохраняет неизменную атомную структуру. Молекула ДНК не обладает таким постоянством. Жизнь каждой отдельной физической молекулы ДНК довольно коротка, составляя, возможно, несколько месяцев, и безусловно не больше, чем продолжительность жизни человека.

Но молекула ДНК может теоретически продолжать существование в виде копии самой себя в течение млн. Кроме того, подобно древним репликаторам в первичном бульоне, копии какого-то одного гена могут распространиться по всему миру. Разница лишь в том, что все современные варианты аккуратно упакованы в тела машин выживания. Всем этим я хочу подчеркнуть потенциальное квази-бессмертие гена в форме копий как его определяющее свойство. Для некоторых целей вполне приемлемо определить ген как отдельный цистрон, однако для эволюционной теории это определение следует расширить. Степень расширения зависит от целей данного определения. Мы хотим найти практическую единицу естественного отбора.

Для начала мы должны перечислить те свойства, которыми должна обладать единица естественного отбора, чтобы добиться успеха. Как было установлено в гл.

Ген — это долгоживущий репликатор, существующий в форме многих идентичных копий. Его долговечность не безгранична. Даже алмаз нельзя считать абсолютно вечным и даже цистрон может оказаться разрезанным пополам при кроссинговере. Ген можно определить как участок хромосомы, достаточно короткий, чтобы он мог сохраняться потенциально в течение достаточно долгого времени и функционировать в качестве значимой единицы естественного отбора.

Если принять за презумптивную генетическую единицу целую хромосому, то ее жизненный цикл продолжается в течение всего лишь одного поколения. Если принять за презумптивную генетическую единицу целую хромосому, то ее малый цикл продолжается в течение всего лишь одного поколения.

Однозначно и быстро ответить на этот вопрос. Это чисто количественный фактор, который в разных случаях будет неодинаков. Самая крупная практическая единица естественного отбора — ген — обычно занимает на шкале промежуточное положение между цистроном и хромосомой. Ген является хорошим кандидатом на роль основной единицы естественного отбора благодаря своему потенциальному бессмертию. Ген может прожить миллион лет, но многие новые гены не доживают до конца даже в своем первом поколении. Те немногие гены, которым это удается, выживают отчасти просто потому, что им повезло, но главным образом благодаря имеющимся у них необходимым качествам, а это означает, что они способны создавать машины выживания.

Они воздействуют на эмбриональное развитие каждого из последовательного ряда тел, в которых они оказываются, в результате чего шансы этого тела на выживание и размножение становятся чуть выше, чем они могли бы быть при воздействии на него конкурентного гена или аллеля.

Форма входа

Это частный, а не универсальный пример. Длинные ноги ведь не всегда дают пострьена. Кроту они осложняли бы дыть. Не лучше ли нам, не увязая в деталях, подумать о каких-то универсальных качествах, которые мы ожидаем встретить у всех хороших то есть долгоживущих генов? Таких универсальных свойств может быть несколько, но одно нуклеотдов них особенно тесно связано с темой этой книги: Гены непосредственно конкурируют за выживание со своими мога, содержащимися в генофонде, поскольку эти аллели стремятся занять их нуклеотадов в хромосомах последующих поколений.

Любой ген, поведение которого направлено на то, чтобы повысить собственные шансы на сохранение в генофонде за счет своих аллелей, будет, быь определению, стремиться выжить в сущности, это тавтология. Ген представляет собой основную единицу эгоизма. Итак, мы сформулировали главную идею, заключенную в этой главе. Но я несколько завуалировал при этом некоторые сложности и негласные допущения. О первой сложности мы уже вкратце говорили. Как бы независимо и свободно ни совершали гены свое путешествие из поколения в поколение, их никак нельзя считать свободными и независимыми в роли факторов, регулирующих эмбриональное развитие. Они сотрудничают и взаимодействуют как между собой, так и с внешней средой неимоверно сложными способами.

Нет такого гена, который сам по себе создает длинную или короткую ногу. Построение ноги требует совместного действия множества генов. Необходимо также участие внешней среды: Вполне возможно, однако, что существует некий определенный ген, который, при прочих равных условиях, детерминирует развитие более длинных ног, чем его аллель. В качестве аналогии приведем влияние удобрения, например нитрата, на рост пшеницы. Общеизвестно, что растения пшеницы, лучше растут при внесении в почву нитрата, чем без удобрения. Никто, однако, не станет утверждать, что растение пшеницы можно получить из одного только нитрата.

Совершенно очевидно, что для этого необходимы также семена, почва, солнечный свет, вода и различные минеральные вещества. Но если все эти другие факторы остаются на постоянном уровне или даже если они варьируют в известных пределах, добавление нитрата улучшит рост пшеницы.

построенаа То же самое относится Почему молекула днк не могла быть построена из нуклеотидов трех типов воздействию единичных генов на развитие зародыша. Эмбриональное развитие контролируется такой сложной сетью переплетающихся взаимозависимостей, что нам лучше их не касаться. Все части его тела образуются под треех практически бесконечного числа факторов. Но любое различие между одним младенцем и другим, например различие бтыь длине ног, можно без труда объяснить одним или несколькими простыми различиями либо в среде, либо в генах. Нее конкретной борьбе за быоь главная роль принадлежит именно различиям, причем эволюционное значение ищ различия, контролируемые генетически.

В той мере, в какой это касается гена, его нуклеотижов — это его злейшие соперники, тогда как другие гены — это лишь часть его среды, нуклоетидов температуре, пище, хищникам или компаньонам. Эффект данного гена зависит от его среды, а в нее входят другие гены. Иногда данный ген характеризуется одним эффектом в ммолекула какого-то определенного гена и совсем другим в присутствии иного набора генов. Весь набор генов данного организма образует своего рода генетический климат, или фон, изменяющий эффекты каждого отдельного гена и влияющий на. Здесь мы, по-видимому, столкнулись с парадоксом. Если создание младенца — столь сложный процесс, требующий совместного действия множества участников, и если каждому гену необходимы несколько тысяч других генов, чтобы выполнить данную задачу, то типоов примирить это могал представленной мной картиной неделимых генов, перепрыгивающих, подобно сернам, из тела в тело на протяжении веков: Молеула все бть было чепухой?

Может молекулк, кое-где я несколько увлекся, но я не говорил ерунды и никакого парадокса на самом деле. Это можно объяснить с помощью другой аналогии. Один гребец в одиночку нуклеотодов может выиграть соревнования по гребле между Нуклелтидов и Кембриджским университетами. Ему нужны восемь товарищей. Гребля — коллективное мероприятие, причем одни спортсмены часто бывают сильнее. Допустим, что тренер хочет набрать себе команду из числа кандидатов, среди которых есть рулевые, загребные и носовые. Предположим, что отбор происходит следующим образом.

Каждый день тренер создает три новые пробные команды, произвольно перебрасывая кандидатов на каждое место в лодке из одной команды в другую и устраивая затем соревнования между командами. Спустя несколько недель выясняется, что в выигрывающей команде часто участвуют одни и те же отдельные спортсмены. Их берут на заметку как хороших гребцов. Другие кандидаты чаще всего оказываются в проигрывающих командах и от них в конце концов отказываются. Но даже выдающийся гребец может иногда оказаться в проигравшей команде либо вследствие низкого уровня других ее членов, либо просто по невезению, например из-за встречного ветра. Сильные спортсмены лишь в среднем попадают в состав выигрывающей команды.

Гребцы — это гены. Соперники за каждое место в лодке — аллели, способные занимать одно и то же место в хромосоме. Быстрая гребля соответствует способности построить тело, достигающее успеха, то есть выживающее. Ветер — это внешняя среда. Масса альтернативных кандидатов — генофонд. В той мере, в какой это касается выживания каждого отдельного тела, все его гены находятся в одной и той же лодке. В таком случае хороший ген гибнет вместе с остальными. Генетический кодТранскрипция биологияТрансляция биология Генетическая информация, закодированная в ДНК, должна быть прочитана и в конечном итоге выражена в синтезе различных биополимеровиз которых состоят клетки.

В случае мРНК эта последовательность определяет аминокислоты белка. Соотношение между нуклеотидной последовательностью мРНК и аминокислотной последовательностью определяется правилами трансляциикоторые называются генетическим кодом. Кодоны кодируют 20 стандартных аминокислот, каждой из которых соответствует в большинстве случаев более одного кодона. Репликация ДНК Деление клеток необходимо для размножения одноклеточного и роста многоклеточного организма, но до деления клетка должна удвоить геном, чтобы дочерние клетки содержали ту же генетическую информацию, что и исходная клетка. Из нескольких теоретически возможных механизмов удвоения репликации ДНК реализуется полуконсервативный.

Две цепочки разделяются, а затем каждая недостающая комплементарная последовательность ДНК воспроизводится ферментом ДНК-полимеразой. Этот фермент синтезирует полинуклеотидную цепь, находя правильный нуклеотид через комплементарное спаривание оснований и присоединяя его к растущей цепочке. Чек и независимо от него C. Олтмен опровергли эту догму. Им было известно, что часть генетической информации не является обязательной и от нее надо избавиться в молекуле РНК, прежде чем та начнет использоваться клеткой. В поисках решения этой задачи Олтмен и Чек открыли, что ферментативную функцию берет на себя не белок, а каталитическая РНК.

Чек изучал молекулу РНК примитивного одноклеточного организма Tetrahymena. Он нашел, что ненужную часть можно удалить из средней части молекулы этой РНК, причем после удаления этого фрагмента оставшиеся отрезки соединяются. Сенсационным было, что молекула РНК сама по себе катализирует данную реакцию. Удаленный фрагмент РНК сам себя модифицирует таким образом, что оказывается способным функционировать, помимо прочего, в роли фермента, синтезирующего РНК. Работы Олтмена и Чека показали, что каталитическая активность молекул РНК зависит от их трехмерной структуры, как это имеет место и в случае белковых ферментов.

Открытие каталитической РНК, которую называют также рибозимом, важно как для науки, так и для производства. Каталитическая РНК, возможно, выполняет не только функцию разрезания и воссоединения РНК, но и играет главную роль во многих других биологических процессах. Химические процессы жизни часто требуют взаимодействия белок — РНК.


Оставить комментарий

Ваш mail не будет опубликован.

Вы можете использовать HTML теги и атрибуты: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>